
The Journal of Systems & Software 204 (2023) 111753

S

i
w
p
o
r
t
q
t
t
t
t
d
c
c
v
c
e

(
s

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Semantic feature learning for software defect prediction from source
code and external knowledge
Jingyu Liu, Jun Ai ∗, Minyan Lu, Jie Wang, Haoxiang Shi
chool of Reliability and Systems Engineering, Beihang University, Beijing, China

a r t i c l e i n f o

Article history:
Received 13 February 2023
Received in revised form 27 April 2023
Accepted 21 May 2023
Available online 7 June 2023

Keywords:
Software defect prediction
Semantic features
Transformer

a b s t r a c t

Software defects not only reduce operational reliability but also significantly increase overall main-
tenance costs. Consequently, it is necessary to predict software defects at an early stage. Existing
software defect prediction studies work with artificially designed metrics or features extracted from
source code by machine learning-based approaches to perform classification. However, these methods
fail to make full use of the defect-related information other than code, such as comments in codes
and commit messages. Therefore, in this paper, additional information extracted from natural language
text is combined with the programming language codes to enrich the semantic features. A novel model
based on Transformer architecture and multi-channel CNN, PM2-CNN, is proposed for software defect
prediction. Pretrained language model and CNN-based classifier are utilized in the model to obtain
context-sensitive representations and capture the local correlation of sequences. A large and widely
used dataset is utilized to verify the effectiveness of the proposed method. The results show that the
proposed method has improvements in generic evaluation metrics compared with the optimal baseline
method. Accordingly, external information can have a positive impact on software defect prediction,
and our model effectively incorporates such information to improve detection performance.

© 2023 Elsevier Inc. All rights reserved.
1. Introduction

In the 21st century, it seems that no aspect of daily life is
mmune to assistance from software, however, software products
ith compromised quality are likely to produce errors and unex-
ected results. Such failures can have severe consequences not
nly causing property damage and monetary loss, but may also
esult in human casualty (Wong et al., 2017, 2010). According
o the findings of a new report, leading causes of poor software
uality include cybercrime resulting from software vulnerabili-
ies and accumulated deficiencies, which are very expensive and
ime-consuming to mend, costing the US an estimated $2.41
rillion by 2022 (Krasner, 2022). Consequently, it is necessary
o identify software defects at an early stage of development to
eliver reliable software products with fewer defects at a lower
ost. Software defect prediction (SDP) methods can help indi-
ate fundamental components of software in which weaknesses,
ulnerabilities, and defects are more likely to occur, thereby
ontributing to the reduction of overall testing and maintenance
fforts.

∗ Corresponding author.
E-mail addresses: liujingyu1@buaa.edu.cn (J. Liu), aijun@buaa.edu.cn

J. Ai), lmy@buaa.edu.cn (M. Lu), wang_jie@buaa.edu.cn (J. Wang),
y2114218@buaa.edu.cn (H. Shi).
ttps://doi.org/10.1016/j.jss.2023.111753
164-1212/© 2023 Elsevier Inc. All rights reserved.
SDP is the process of building classifiers to predict which
software modules or regions of code are most likely to fail (Omri
and Sinz, 2020), and one of the most important factors affecting
the predictive performance is the feature representation of the
source code. Early research on SDP focused on designing artificial
features related to potentially defective code, such as product
metrics (Chidamber and Kemerer, 1994; Purao and Vaishnavi,
2003), process metrics (Muthukumaran et al., 2015; Nagappan
and Ball, 2005), design metrics (Wong et al., 2000), and network
metrics (Ai et al., 2019; Li et al., 2019; Yang et al., 2018), while
many researchers have evaluated various machine learning tech-
nologies to improve prediction accuracy and performance (Aleem
et al., 2015; Alsaeedi et al., 2019; Elish and Elish, 2008; Öza-
kıncı and Tarhan, 2018; Prasad et al., 2015). However, traditional
features cannot distinguish codes that have different semantics
but similar structures; in other words, these features do not
adequately capture the syntax and semantics of different levels of
source code (Akimova et al., 2021; Omri and Sinz, 2020; Pachouly
et al., 2022). With the emergence of deep learning (DL) based
on artificial neural networks (ANNs), researchers have proposed
representation learning algorithms to automatically learn the se-
mantic representation of programs (Dam et al., 2021; Hoang et al.,
2019; Li et al., 2017; Qiu et al., 2019; Wang et al., 2020, 2016;
Xu et al., 2019; Zhao et al., 2022). More advanced features can
be extracted from raw data using DL, bridging the gap between

the semantic information of programs and features for defect

https://doi.org/10.1016/j.jss.2023.111753
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111753&domain=pdf
mailto:liujingyu1@buaa.edu.cn
mailto:aijun@buaa.edu.cn
mailto:lmy@buaa.edu.cn
mailto:wang_jie@buaa.edu.cn
mailto:sy2114218@buaa.edu.cn
https://doi.org/10.1016/j.jss.2023.111753

J. Liu, J. Ai, M. Lu et al. The Journal of Systems & Software 204 (2023) 111753

p
t
(
n
o
p
2
m
c

f
c
i
d
p
W
c
m
a
i
(
w
u
T
t
t
d
r
f
s

o
t
f
t
p
N
f

M
d
f
N
d
d
t
m
T

rediction. Source code tokenization and automatic feature ex-
raction are still the main factors affecting DL for defect prediction
Giray et al., 2023). In recent years, many advances in the field of
atural language processing (NLP) have been used to solve vari-
us code comprehension problems and have also demonstrated
ositive results in the field of SDP (Fu and Tantithamthavorn,
022). Applying the Transformer architecture with self-attention
echanism will allow a more comprehensive consideration of the
ode context of the defect (Akimova et al., 2021).
Typically, token sequences and graph structures extracted

rom source code are used as model inputs to generate features
ontaining semantic information Semantics refers to the mean-
ngs of the program, for code intelligence such as vulnerability
etection and clone detection, the core challenge is how to em-
ower models to understand and infer the intent behind the code.
hen humans read code, understanding becomes easier if the

ode contains descriptive text such as comments and other infor-
ation. For the testing engineers, identifying and locating defects
re also based on the understanding of the code. As developers
ncreasingly use version control and source management system
SCMS) repositories such as GitHub to manage code in the soft-
are development process, researchers have access to a wealth of
nstructured NL data such as code issue reports and pull requests.
he software project itself also provides requirements documents
hat describe functional information, as well as comments within
he code. In fact, the use of unstructured natural language (NL)
ata that does not come from source code may also help to obtain
icher features containing defective semantics. However, only a
ew studies have explored the automatic extraction of additional
emantic information from such external knowledge.
These unstructured NL data can be regarded as another view

f the source code to help generate semantic features that reflect
he functionality of the code. Using this kind of information can
urther enrich feature semantics and then support SDP models
o identify defective modules (Huo et al., 2018). However, one
rimary problem with unstructured NL data is how to combine
L texts and programming language (PL) code to learn semantic
eatures.

In this paper, we propose a novel model, PM2-CNN (Pretrained
odel-Based Multi-Channel Convolutional Neural Network), for
efect prediction, addressing the problem of learning semantic
eatures with the help of external knowledge in an unstructured
L format. A pretrained language model fine-tuned on labeled
atasets is used to extract semantic features from source code and
escriptive text. Furthermore, we introduce a multi-channel CNN
o simultaneously process PL features and NL features, and use
ultiple convolution kernels to obtain rich semantic information.
he contributions of this work are presented as the following:

(1) From the perspective of better understanding and inferring
code intent, defect feature is constructed by combining
programming language data with natural language data,
which enhances the features used in the software defect
prediction process with richer information.

(2) A novel defect prediction model, PM2-CNN, is proposed,
which takes both source code and descriptive text se-
quences as input and identifies potentially defective code
modules as a result. Pre-trained model is introduced to
extract features of natural and programming languages,
and multi-channel CNN is built to serve as a classifier for
defect prediction.

(3) The experiment result on large real-world dataset shows
that the proposed method performs better than the base-
line models, showing that combining PL data and NL data
can yield better feature representation that reflects the
defective semantics of the source code, and incorporating
external knowledge in an unstructured NL format has a
positive effect on SDP.
2

The remainder of the paper is organized as follows: Section 2
introduces works relevant to the features and techniques used for
SDP. Section 3 presents the proposed defect prediction method.
Section 4 describes the selection of datasets and experimental
settings. Section 5 compares our work with other approaches,
draws conclusions, and provides directions for future research.
Finally, threats to validity and the study conclusion are presented.

2. Related work

In the following subsections, relevant works that inspired our
research are briefly introduced.

2.1. Features used for software defect prediction

In the SDP field, determining the relevant features that can
distinguish between defective and non-defective software enti-
ties is one of the more active research directions. Early research
focused on coupling and cohesion metrics in code suites (i.e., CK
metrics suite Chidamber and Kemerer, 1994). Research (Tiwari
and Rathore, 2018) has provided an overview of coupling and
cohesion metrics used for object-oriented suites. In addition,
researchers have also introduced process metrics such as code
changing metrics (Madeyski and Jureczko, 2015) and developer
metrics (Bhattacharya et al., 2012) for the behaviors of each
stage of the software development process, respectively, model-
ing code modifications and the interaction between developers
when modifications occur. The designs of these metrics not only
consider the code itself but also take other relevant information
into consideration by mining the relationship between metrics
and defects. However, artificially constructed metrics are difficult
to distinguish from program semantics and therefore degrade
defect prediction performance.

In subsequent studies, researchers used machine learning and
DL methods to automatically learn semantic features from source
code, thus, capturing the structural and semantic information of
the program. Considerable existing work has proposed different
approaches to learn program semantics for different tasks, and
the approaches can be categorized into four groups: Feature-
based, Sequence-based, Tree-based, and Graph-based (Siow et al.,
2022). Wang et al. (2020, 2016) utilized a deep belief network to
automatically learn semantic features from source code, using the
program’s abstract syntax tree (AST) and source code changes as
input. Dam et al. (2021) represented the code as a sequence of
code tokens and used the long short-term memory (LSTM) model
to convert the sequence of tokens into a feature vector expressing
the semantic information. Several studies (Hoang et al., 2019;
Li et al., 2017; Qiu et al., 2019) have proposed feature learning
techniques based on CNN architecture to tackle the problem of
capturing local characteristics. Li et al. (2017) proposed an SDP
framework called DP-CNN, which uses a CNN to generate discrim-
inative features from the program’s AST, and word embeddings
are used to encode tokens extracted from the AST to learn the se-
mantics of the source code. SDP approaches based on deep neural
networks (Xu et al., 2019) and graph neural networks (Xu et al.,
2021) have also been proposed, with the aim of learning high-
level feature representation of defect data. It can be noted that
these studies only consider code sequences or abstract graphs of
code as the source of input for feature generation, which makes
the features relatively scarce and insufficient.

A few researchers have explored the use of code annotations
to enhance the semantic representation of features. Huo et al.
(2018) used CNNs for annotation augmentation programs as SDP
models to automatically embed code annotations when generat-
ing semantic features. Their method used a pretrained Word2Vec
algorithm to encode codes and comments into numeric vectors,

J. Liu, J. Ai, M. Lu et al. The Journal of Systems & Software 204 (2023) 111753

t
d
d
a
N
b
r
e
a
c
n
u
e
t
r
c
f
m
c
e
d
m
s
a
h
d
p
r

2
d

g
p
s
l
t
t
d
n
c

R
d
t
p
a
a
e
n
t
s
g
p
p
c
a
e
r
I
L
L
u
a
t

c
d
X
s
c
a
w
t
t
i

hen fed the obtained vectors into two separate CNNs. The results
emonstrated that the comment feature can help improve pre-
iction performance, outperforming CNNs, deep belief networks,
s well as standard classifications such as Logistic Regression or
aive Bayes. In another study (Miholca and Czibula, 2019), a hy-
rid SDP model based on ANN and gradient relational association
ules was proposed, and the source code and annotations were
ncoded as fixed-length numeric vectors to distinguish defective
nd non-defective software components. The results showed that
onsidering semantic features rather than traditional metrics sig-
ificantly improves SDP performance. However, these studies use
nsupervised learning models such as Word2Vec or Doc2Vec to
ncode the source code and annotations into numeric vectors,
hus, ignoring the influence of the code context on features. Our
esearch aims to combine unstructured NL data, which can be
ode comments or other descriptive text, with PL data in semantic
eature generation. The proposed method learns program se-
antics with sequence-based code representations, which treats
odes as flat sequences of tokens (Moritz et al., 2015; White
t al., 2015) and transforms them into numerical vectors through
istributed representations (Mikolov et al., 2013). In the proposed
odel, a pretrained language model is applied to capture deeper
emantics, given the semantic and syntactic similarity of code
nd text. Depending on the context, similar code or text may
ave very different characteristics that may be associated with
efects. In addition, we introduce a multi-channel CNN to jointly
rocess program language features and natural language features,
esulting in the enhancement of feature semantics.

.2. Pretrained language models and their application in software
efect prediction

In the field of NLP, pretrained language models have achieved
reat success. Massive unlabeled corpora of data are used for
retraining tasks, such as masked language modeling and next
entence prediction (Devlin et al., 2018), and finally a general
anguage representation mapping function is available. Following
he pre-training stage, the models are fine-tuned for specific
asks, and good results have been demonstrated for multiple
ownstream tasks, which facilitate the application of these tech-
iques to source code and help in obtaining context-sensitive
ode representations.
In particular, BERT (Devlin et al., 2018) (Bidirectional Encoder

epresentations from Transformers) represents a milestone in the
evelopment of the NLP field. Kanade et al. (2019) attempted
o introduce BERT into the field of source code and thus pro-
osed CuBERT. They used the Python file corpus in GitHub as
dataset and performed fine-tuning on five classification tasks
nd one pointer prediction task. Alternatively, CodeBERT (Feng
t al., 2020) is a dual-modal extension of BERT, which uses both
atural language and source code as its input. CodeBERT cap-
ures the semantic connection between PL and NL, and achieves
tate-of-the-art results in both code search and code document
eneration tasks. UniXcoder (Guo et al., 2022) is a unified code
re-training model framework proposed by Microsoft. Different
re-training tasks and attention mechanisms are used in UniX-
oder to enable the model to perform code understanding task
nd generation task as well. UniXcoder uses three language mod-
ling tasks for pre-training: Masked Language Modeling, Unidi-
ectional Language Modeling, and Denoising Objective Denoising.
n addition, the authors propose Code Fragment Representation
earning, which includes the tasks of Multi-modal Contrastive
earning (MCL) and Cross-Modal Generation (CMG), where MCL
tilizes AST to enhance the semantics of fragment embeddings,
nd CMG leverages code annotations to align embeddings be-
ween programming languages. The ablation experiments show
3

that both AST and code annotations enhance UniXcoder to better
capture code semantics. Considering the adaptability of the code
representation obtained by this pretrained language model, our
research utilizes the encoder-only mode of UniXcoder as the en-
coder of our proposed model to generate feature representations
of PL and NL.

In the SDP field, several SDP methods based on Transformer
and pretrained language models have been explored by
researchers. In the research (Uddin et al., 2022), an SDP model
using a bidirectional LSTM network (Bi-LSTM) and BERT-based
semantic features (SDP-BB) is proposed. This model uses Bi-LSTM
to mine contextual information from embedded token vectors
learned by the BERT model and captures the semantic features
of codes to predict defects in the corresponding software. Fu and
Tantithamthavorn (2022) propose a Transformer-based line-level
vulnerability prediction approach, namely LineVul, which uses
the CodeBERT pretrained language model to generate a vector
representation of the source code. Their results show that the
F1 metric of LineVul is significantly higher than the baseline
method. However, in the studies mentioned above, the pretrained
language model is used to generate the feature representation of
the code without considering any other external knowledge.

Our research aims to enhance code representation with richer
semantic information by augmenting unstructured NL data. The
proposed method extracts features based on a pretrained model
and uses a multi-channel CNN to fuse PL and NL features. The use
of convolution operations helps to aggregate contextual tokens
and capture local semantic information, thereby enhancing the
features used for SDP.

3. Methodology

In this section, the framework of the proposed model, PM2-
CNN, is described in detail, with the aim of jointly considering
PL features and NL features for SDP. The proposed model inte-
grates the pretrained model and the constructed multi-channel
CNN, which consists of a two-step procedure: First, based on
the pretrained model, the feature embeddings of the source code
in PL and the descriptive text in NL are respectively extracted.
Second, the two feature embeddings perform the convolution
layer operation to obtain feature vectors for predicting software
defects. The workflow of the proposed model is depicted in Fig. 1.
For the model inputs, the order and sequence of the tokens is
preserved and fed into the model. Data pre-processing such as
tokenization and feature extraction is then performed. During
training, the model learns to optimize Cross Entropy Loss func-
tion that measures the difference between the predicted defect
probabilities and the actual defect labels.

In the remainder of this section, some notations used in the
description of the model are presented before introducing the
model, and then the process of generating feature embedding
based on the pretrained model UniXcoder is introduced. Finally,
the multi-channel CNN classifier is described in detail.

3.1. Notation

Suppose there are N sets of data in the dataset X = (codei;
texti)|

Ndata
i=1 and a corresponding label set Y = yi|

Ndata
i=1 , where

odei and texti indicate the source code in PL format and the
escription text of the source code in NL format in ith module of
, yi indicates the corresponding label, and Ndata is the number of
ubjects in the data archives. Source code can be represented as
odei =

�
w1

i ; w2
i ; : : : ; wn

i

�
and descriptive text can be represented

s texti =
�
c1i ; c2i ; : : : ; cmi

�
. Here, wn

i

�
cmi

�
denotes the tokens

ith the length of n .m/, which are obtained after applying the
okenization function on the source code and descriptive text of
he ith module. The notions used to describe the model are listed
n Table 1.

J. Liu, J. Ai, M. Lu et al. The Journal of Systems & Software 204 (2023) 111753

f
f
l
d
h
t
i
t
e
s
i
s
s

3

d
f
T
d

Fig. 1. An overview of the workflow of the proposed model.
Fig. 2. UniXcoder-based feature embedding generation.
o
c

c

Table 1
Notations used in the description of the model.
Symbols Details

X Repository/Dataset
codei; texti Source code and descriptive text in ith module of X
Y The label of X
yi The ith label of Y
wn

i Represents token of programming language
cmi Represents token of natural language
xn Represents the embedding of token n
L Fixed length of token sequence
d Denotes the feature embedding size

3.2. Pretrained model-based feature embedding generation

The proposed model uses UniXcoder (Guo et al., 2022), a uni-
ied cross-modal pretrained model for PL, to learn the semantic
eatures of the source code and description text. UniXcoder uti-
izes cross-modal information such as AST and code annotations
uring pre-training, and experimental results for code compre-
ension and generation tasks show that it achieves SOTA in most
asks, which indicates that the representation of code fragments
s enhanced. Therefore, UniXcoder was selected as the encoder in
he proposed model for extracting code and text features, with
ach fragment being output as a vector. Fig. 2 illustrates the
tructure of the feature embedding generation in which there
s a UniXcoder-based byte-pair encoding (BPE) tokenizer and a
tack of N Transformer layers. Each layer contains a multi-headed
elf-attention operation followed by a feed forward layer.

.2.1. Byte pair encoding tokenization
It is noted that UniXcoder trains a BPE vocabulary on the C4

ataset and CodeSearchNet, which consists of 50K subword units
or programming languages and 1416 additional special tokens.
herefore, in this model the UniXcoder pretrained tokenizer is
irectly employed.
4

The BPE tokenizer is a typical subword-based tokenizer al-
gorithm, which decomposes strings or words into substrings or
subwords, with a granularity level between characters and words.
The central idea is to continue merging subwords according to
the frequency of occurrence until the vocabulary size is reduced
or the probability increment is below a certain threshold, which
helps to balance the vocabulary dictionary size and semantic
independence. Tokenizers can divide words into their smallest
components and then combine these small components into
statistically interesting components. For example, ‘‘smaller’’ and
‘‘smallest’’ become ‘‘small’’, ’’er’’, and ‘‘est’’. The advantage of BPE
is that it can share subwords to compress storage space and allow
the tokenizer to advance further. Unmatched substrings will be
replaced with special symbols such as ‘‘<unk>’’ for output, and
string blocks classified as unknown tokens will actually disap-
pear during training, thus, preserving more meaningful semantic
information for the subsequent embedding procedure.

UniXcoder is a code pretrained model that is simultaneously
compatible with ‘‘encoder-only’’ mode, ‘‘decoder-only’’, mode and
‘‘encoder–decoder’’ mode. Since the encoder-only mode is used
in the subsequent feature embedding generation, a special token
should be added at the front of the input, which can be regarded
as a ‘‘switch’’ to control the behavior of the model through dif-
ferent self-attention mask strategies. Specifically, after applying
UniXcoder-pretrained BPE subword tokenization on the source
code and descriptive text, a special token [Enc] is added to each
f the input sequences, for example, the sequence of the source
ode token is as follows:

odetokeni = [[cls] ; [Enc] ; [Sep] ; w1; w2; : : : ; wn; [sep]] (1)

3.2.2. Feature embedding generation
In this step, the UniXcoder architecture is used as the encoder

of the proposed model, and the pretrained weights of the UniX-
coder are used as the initial weights. First, to generate embedding
vectors for each token and its position, word and positional en-
coding are performed for the subword tokenization. The vectors

are then fed into the UniXcoder architecture, which consists of

J. Liu, J. Ai, M. Lu et al. The Journal of Systems & Software 204 (2023) 111753

a
o
s
[
t

3
t
p
s
a
r
a
g
a
t
t
e
p

v
a
T
d
p
x
a
d
a

x

stack of Transformer layers. Each Transformer layer consists
f an architecturally identical Transformer that has a multi-head
elf-attention layer followed by a feed forward layer. The prefix
Enc] in the output of the previous layer controls the UniXcoder
o make it work as an encoder-only model.

.2.2.1. Token embeddings and position embeddings. In addition to
he semantic meanings of the tokens in the input sequence, the
osition and order define the syntax of the code and the compo-
ition of the sentence, which means they are also critical for code
nd text understanding. Therefore, it is important to add position-
elated information in the input sequence to make the model
ware of the order of the input. The intention of this step is to
enerate feature embedding that captures the semantic meanings
nd positional information of code and text. To do so, for each
oken sequence obtained by the subword-tokenized function,
here is (1) a token encoding vector representing the meaning of
ach word and (2) a positional encoding vector identifying the
osition of each word in the input sequence.
The input sequence is mapped into an n-dimensional word

ector sequence through a series of processing operations such
s tokenization, dictionary mapping, and sequence encoding.
he positional encoding information is also mapped into an n-
imensional word vector. Finally, the token embedding and the
osition embedding are added to form a new embedding vector
with dimension of .L; d/ as the input of the UniXcoder encoder,
s shown in formula (2), L is the fixed sequence length and d
enotes the embedding size. Each row in x represents a token,
nd the dimension of x is (512, 768) in the proposed model.

= xtoken embedding
+ xposition embedding (2)

3.2.2.2. UniXcoder encoders. In this step, the feature embedding
vector x is fed into a stack of UniXcoder encoder layers. Each
layer performs a multi-head self-attention operation, and then a
feed forward neural network processes the output of the previ-
ous layer. The following briefly introduces the multi-head self-
attention mechanism and feed-forward neural network.

The multi-head self-attention layer used in the proposed
model makes each attention mechanism optimize the different
characteristic parts of each vocabulary, in order to balance any
deviations that may be produced by the same attention mech-
anism and benefit the meanings of words with more nuanced
expressions.

The self-attention mechanism used in Transformer integrates
the entire context into each word and helps to learn the de-
pendencies of words and the internal structure of a sentence.
The calculation of self-attention introduces three vectors, Query
(Q), Key (K), and Value (V), which are the result of multiplying
the input vector with matrices Wq, Wk, and Wv respectively.
The corresponding matrices are randomly initialized and then
continuously optimized through model training with a default
dimension of (768, 768).

x × Wq = Query .Q / (3)

x × Wk = Key .K / (4)

x × Wv = Value .V / (5)

The attention score is calculated by the dot production of
the Query and Key vectors of each word, which is divided by
the square root of the Key vector dimension to make the gra-
dient more stable. The formula is given in Eq. (6), where dk
denotes the number of columns of the Q, K matrix, i.e., the vector
dimension.

Attention .Q ; K ; V / = softmax
�
Q · K T

√

�
V (6)
dk
5

Fig. 3. Scaled dot-product attention.

The masking operation in the Transformer removes the influ-
ence of various paddings during the training process; in ‘‘encoder-
only’’ mode, all elements of the mask matrix are set as 0 to allow
all tokens to attend to each other. Finally, the SoftMax function
is performed on the result and multiplied with the Value vector.
The specific process and calculation formula are shown in Fig. 3:

To capture richer semantic embedding for the input sequence,
self-attention is combined with the multi-head mechanism. Seg-
menting into multiple heads allows the model to focus on dif-
ferent aspects of information. Multi-Head Attention is to do the
Scaled Dot-Product Attention process H times and then merge the
output, as shown in formula (7).

MultiHead .Q ; K ; V / = Concat .head1; : : : ; headh/W o

where headi = Attention
�
QWQ

i ; KW K
i ; VW V

i

�
(7)

In the feed-forward neural network, a unit that can perform
nonlinear transformation is provided to make the output fea-
ture embedding more meaningful. The unit maps the attention
result of each position to a larger dimensional feature space,
then utilizes a nonlinear activation function such as ReLU and
finally returns to the original dimension. The pseudo-code for
pretrained model-based feature embedding generation is shown
in Algorithm I.

3.3. Multi-channel CNN classifier

In this subsection, the classification procedure based on a
multi-channel CNN is demonstrated. The multi-channel CNN is

	Semantic feature learning for software defect prediction from source code and external knowledge
	Introduction
	Related Work
	Features Used for Software Defect Prediction
	Pretrained Language Models and Their Application in Software Defect Prediction

	Methodology
	Notation
	Pretrained Model-Based Feature Embedding Generation
	Byte Pair Encoding Tokenization
	Feature Embedding Generation

	Multi-Channel CNN Classifier

	Experiment
	Research Questions
	Dataset
	Evaluation Measures
	Experiment Setting

	Experiment Results and Analysis
	Does the proposed approach outperform the state-of-the-art function-level SDP approach?
	How does the use of multi-channel CNN as a classifier affect the model?
	What are the effects of unstructured NL data on the prediction performance?

	Threats to Validity
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

